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Abstract—This paper presents an experimental determination of the virtual mass and drag
coefficients of a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant
water. The purpose of this experiment was to determine the importance of virtual mass on the
transient response of an INEL-type drag-disk flow meter.

The results indicate that for a given void fraction, the virtual mass coefficient increases, and the
drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude
parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing
void fraction.

Based on the measured virtual mass coefficients, it was concluded that when an INEL-type
drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be
neglected in the analysis of its response without appreciable error.

1. INTRODUCTION

In transient single-phase flows, the net hydrodynamic force on a bluff body is usually
expressed as the sum of the virtual mass and drag forces (Morrison 1950). Analytical
expressions for these forces have been previously obtained (Lyle & Lai 1972; Lai 1973) for
low Reynolds number (i.e. Stokes) flows, in which there is no separation in the wake. Prior
experimental work has centered around the determination of the Fourier-averaged drag and
virtual mass coefficients, C,, and C,,, as functions of the period parameter. Experiments have
been conducted for single-phase sinusoidally oscillating liquid flows past cylinders (Ke-
ulegan & Carpenter 1958; Sarpkaya 1975), spheres (Sarpkya 1975), and plates (Keulegan &
Carpenter 1958). Mercier (1973) oscillated a cylinder in a low speed stream and the C,, and
C,, thus obtained were found to be in good agreement with those previously obtained by
Keulegan & Carpenter (1958), for a stationary cylinder in an oscillating liquid flow.

Here we present an experimental determination of the virtual mass and drag coefficients
for a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant
water. The primary purpose of the experiment was to assess the importance of the effect of
the virtual mass of the disk on the transient response of an INEL-type drag-disk during a
blowdown transient. In,our experiment, the disk was oscillated in a two-phase mixture,
although for an actual drag-disk, both the disk and the fluid undergo acceleration.

Thus, according to potential flow theory, the virtual mass coefficient determined from
our experiment should be smaller than in the case of an actual drag-disk. However, the
effect of viscosity can be expected to compensate for this difference to some extent.

2. DISCUSSION OF EXPERIMENT
The apparatus used in this experiment is shown schematically in figure 1. The disk was
5.08cm (2in.) in diameter, and was made of 304 stainless steel. It was sinusoidally
oscillated by an electromechanical seismic shaker in a two-phase mixture of air flowing
upward through a vertical plexiglass tube containing stagnant water. Figure 2 is a picture
of the apparatus at a low air flow rate.
The experimental conditions were such that the system pressure drop was dominated
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Figure 1. Experimental setup for the measurement of virtual mass and drag coefficients.

by the hydrostatic head; thus the global void fraction, {« ), of the two-phase mixture could
be measured using a manometer. An accelerometer mounted on the disk measured the
instantaneous acceleration of the disk, and a strain-gauge mounted on the beam measured
the instantaneous sum of the drag and inertia forces. The shaker, shown in figure 2, was
of the electromechanical type, and employed special air bearings to ensure sufficient lateral
stiffness. It was driven by a power amplifier, the input to which was a sinusoidal signal
of the desired frequency from a function generator.

The beam, which supported the disk, was also made of 304 stainless steel and was of
rectangular cross-section. It was designed to be flexible enough to give a measurable strain,
and yet stiff enough to prevent contamination of the strain gauge and accelerometer signals
by its modal frequencies. To insure this, the natural frequency of the beam, f,, given by,

k
f;r=A'_l=Xl—l'j’ i

where k is the beam stiffness, was made greater than four times the highest frequency of
oscillation of the disk. In [1}, E is Young’s modulus and I, the moment of inertia about
the neutral axis. The cantilever arm length, /, was taken to be the length of the beam (figure
1). The mass, M (132 gm), at the outer end of the cantilever was calculated as an equivalent
mass, concentrated at the center of the disk, of the distributed beam and disk masses.

The beam strain at the location of the strain gauge equals the stress divided by Young’s
modulus, or,

FsgLh 2

Strain = > B
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Figure 2. Experimental setup with air/water mixture at low void fraction.

where the thickness of the beam, 4, was 0.17 cm (0.066 in.), its breadth was 0.51 cm (0.2 in.)
and L, its length, was 7.62cm (3in.). To size the strain gauge, the force at the location
of the strain gauge, Fg;, was estimated using [9], presented later with typical values for
the virtual mass (C,,) and drag coefficients (C,), given by Keulegan & Carpenter (1958).

The beam was welded onto a 304 stainless steel sting, which was made stiff enough to
give zero-slope and zero-deflection conditions at the fixed end of the beam.

Figure 3 shows a block diagram of the data acquisition electronics used in the
experiment. The signals from the accelerometer and the strain gauge were amplified to a
range of 0 to 10 volts to be compatible with the analog-to-digital (4/D) converter. An
active low-pass filter with a cutoff frequency of 100 Hz was used to filter out higher
frequency noise from the signals. The signals were then sampled and digitized. Table 1
shows the sampling frequencies for the various frequencies of oscillation. A 60 Hz noise
in the strain gauge signal necessitated a sampling frequency above the Nyquist value of
120 Hz for all cases. The digital signals were fed into a PDP-9 mini-computer through a
CAMAC module and stored on digital tape. Before processing the data, the strain guage
and accelerometer signals were smoothed using a numerical low-pass filter with a linear
roll-off (Ormsby 1971). The procedure used is fully described by Kamath & Lahey (1981).
Table 1 shows the sampling frequencies (f;), and the filter cut-off frequencies (f7) for the
various forcing frequencies (f;) investigated.
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Figure 3. Block diagram of data acquisition electronics.

To calibrate to strain gauge, the paddle was mounted on a rigid support and the disk
was loaded with known weights. As expected, the force was observed to have a linear
relationship with strain gauge output. The accelerometer was then calibrated by oscillating
the paddle in air. The inertia force measured by the strain gauge and the known mass of
the disk and beam were used to calculate the acceleration at each instant of time, which
was then compared to the output of the accelerometer to obtain a calibration constant.

Table 1. Sampling frequencies and lowpass filter cutoff and roll-off termination frequencies for
different forcing frequencies

Frequancy of Sampling Cutoff frequency Roll-off
Oscillation (f.) Frequency (fs) of Numerical Termination
° Fiiter () frequancy of
Numerical Filter
(fy)
31.25 uz 500 Mz 40 Hz 44 Hz
15.625 Mz 250 Hz 20 Hz 22 Hz
7.8125 Hz 125 Hz 10 Hz 11 Hz
3.90625 Hz 125 Hz 5 Hz 6 Hz
1.953125 Hz 125 Hz 2.6 Nz 3.5 Hz
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3. DISCUSSION OF ANALYSIS
The equation of motion of the isolated body, consisting of the disk and the beam, is given
by Newton’s second law of motion,

time rate of change sum of the external
of momentum of the | = forces on the [3]
isolated body isolated body

The left-hand side of 3] is given by,

time rate of change
of momentum of the | = ——Z = "% [4]
isolated body

where x is the displacement.

The external forces consist of the drag and virtual mass forces in addition to the shear
force at the location of the strain gauge, Fg;. Since the vapor phase drag was relatively
unimportant in our low pressure experiment, only the liquid phase drag was included in our
model. Hence, the expression used for the drag force was,

2Co (nD

Fd_'z'z ('—‘) o1 — ad<v,— X H{Jo,—~ XD, (3]

c

where C, is the drag coefficient and D is the disk diameter. The one-dimensional liquid phase
velocity, (v)), is zero in this experiment.
The virtual mass force was expressed as,

YD\ .
L 0

where C,, is the virtual mass coefficient and {5 ) is the two-phase density. The representative
velocity of the two-phase mixture is the center-of-mass velocity, U,,, given by,

U2 G o1 =)o)+ Pc<°‘><”c>]_

B~ Gli-ay+pela) 7
Since the motion of the fluid is steady, (dU,/d¢) = 0; thus [6] becomes,
__CpID
Fom = =202 8]

Substituting [4], [5] and [8] into [3], including the shear force, Fg;, and rearranging, the
resultant equation is:

Fsa=[M+C( )<p>] +Q’ﬂm<1—a>xlx|} [

The expression forms the basis of the calculation of the coefficients C,, and C, from the
measurement of Fg; and ¥. The data reduction technique employed will be described in the
next section.
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4. DATA REDUCTION

The virtual mass and drag coefficients, C,, and C), appear in the virtual mass and drag
components of the total force given in [9].

The virtual mass force, being an inertial force, is in-phase with the acceleration. Also, it
will be shown shortly that for sinusoidal motion of the disk, the Fourier series for drag force
has frequency components that are odd multiples of the fundamental frequency (Keulegan
& Carpenter 1958). In this series, the component with the largest magnitude and the lowest
frequency (i.e. the fundamental) is one-quarter cycle out-of-phase with the acceleration. Thus
a Finite Fourier Transform of the force signal, Fy;(t), can be used to extract the Fourier-
averaged drag and inertial components of the total force. This approach has been followed
previously by Keulegan & Carpenter (1958). Garrison et al. (1977), used a least-squares
approach which, for sinusoidal motion of the body yields a C,, identical to that of Keulegan
and Carpenter, but a C,, that is somewhat different. Both methods, though theoretically
sound, were found unsuitable for use in this experiment. These methods, have been
evaluated in detail elsewhere (Kamath & Lahey 1981) and will not be discussed further here.

The method used in the present study uses the acceleration signal, ¥(¢), as the kernel to
extract the inertial and drag components of the force signal.

To use this approach, {9] is multiplied by ¥(¢ ) and integrated over an integral number
of cycles. That is,

JWHT F(1)%(t)dt = [M + Cm(Pé—B)(ﬁ)] JHnT [#()F dr

+§22<5f—2)[pL<1 —a)ﬁﬂ i|% % dt]. [10]

Equation [9] is then multiplied by X(¢ + 7/4) and again integrated over the same time
interval,

j[+"TFSG(t)i(t + T/4)dt = [M + c,,,(-?)(,s >} I O + T dr

2 t+nT
+5C§%(£?“)[PL<‘““>J‘ X[ + T/ de. [11]

Let us now define:

e f " FeE () (12

LA f T EnE( + T/ dr, [13]
t+nT

I,éf E{Q): 1A [14]

14éjl+"5c'(t+ T/4)5%(t) dt, [15]

Iséjl+nTX(t)IX(t)|£(t)dt, [16]
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t4+aT
I2 j x(t)IJE(t)|:ic'(t + T/4) dt, [1n
f
D3
Alé[M + C...(T)(ﬁ >], (18]
and,
Cp (nD?
aAZD(P -
A, 2 ( 2 )Pl(l o). [19]
In terms of these variables, [10] and [11] reduce to,
I = AL+ Ay, [20]
L= A1+ A [21]
Solving [20] and [21] for A,,
_ LI — LI
A= LI— LI (22
and A4,,
1312 - I4I|
== 4 23
4, LI, — LI [23]

Now substituting [22] and [23] into [18] and [19] and solving for the coefficients C, and
Cp, one obtains,

1116 - IzIs ] 3
Co=|77—7-M |3 [24]
[I316 s 1415 <p >D3
and,
8 Lh, — LL
= . 2
CD nszL<1 - a) {1316 - 1415 [ 5]

For sinusoidal motion of the disk, the displacement, velocity and acceleration are given
by,

x(t) = xo sin 2nfyt [26]
(1) = xo(2nf;) cos 2nfyt [27]

and,
£(t) = — xo(2nf,)? sin 2nfyt. 28]

The product, x|%| can be expanded in a Fourier Series as,

*E| = x@nfef 3 (- DR cos(2mnfyt). [29]



256 P. S. KAMATH ef al.
Also, the acceleration, shifted in phase by one-quarter cycle, is given by,

X(t + T/4) = — x,(2nfy) cos 2nfyt. [30]
Thus, the integrals, I, and I, given by [15] and [16], are equal to zero due to orthogonality.

Also, the product, J&IJ&|, in [17] for I can be eliminated using [29] and noting that there
is only one non-zero term in the series, thus,

t+nT 8
I,= j xoz(Znﬁ,)zg;[- cos 2nfot ( — xo)(27fy)? cos 2nfyt dt, [31]
t

where [28] has been used for the acceleration, X. Using [30], [31] can be expressed as,

t+nT
I = —%xo f [%(t + T/4)P dr. 132]

Thus noting that /, = I, = 0 for sinusoidal motion of the disk, and using [12}-[14] and [32]
for I, I, I, and I, [24] and [25] can be written in explicit form as,

gfjl+"TFsdt)i(t)dt \
C,=| —5 M _ N
J "E@Par D) (33]
and,
J‘l+nT Fso(t)x(t N T/4) @ 3
CD= U t+nT gc . ) [34]
J [X( + T/®F de p1 —a)Dx,

Equations [33] and [34) were used to calculate the coefficients, C,, and C,.

The amplitude of oscillation of the disk, x,, was calculated by using the acceleration
signal, X(¢). Assuming sinusoidal motion of the disk, the recorded acceleration signal is
approximated by a chopped sinusoid, represented by,

" Aysin 2nfit, Jt|< T,
= 5
*) { 0, otherwise 331
where, according to [28],
A2 — x(2zfy). [36]
If At is the time interval between samples, and N is the number of samples, then,
N4t
To=—- [37]

Let us now take the Fourier Transform of [35],

@

(e f #(t) e~ dy, [38]

— 00
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and the inverse transformation is,

24 J " F e s, [39]

Substituting [35] into [36] and integrating one obtains,
x n= —jAy T, [40]

and,

|| = | Ad| To- [41]
Substituting [36] and [37] into [41], and solving for x,, one obtains,

__ 25|

%= GafyNAt

(42)

This expression was used for calculation of x;,. The Fourier transform calculations, for
the evaluation of X(f;), were performed using a Fast Fourier Transform (FTT) algorithm
proposed by Brigham (1974). The frequency of oscillation, f;, was determined from the
location of the peak of the power spectral density (PSD) function of the acceleration signal,
given by,

PSD A [X(NX*(N]'?, [43]

where X(f)* is the complex conjugate X(f). The calculated value of x, was used in [33] and
[34] for the calculation of C,, and C).

5. EXPERIMENTAL RESULTS

The measured virtual mass and drag coefficients are listed in tables 2~7 for various void
fractions. The results are tabulated for a range of amplitude parameters between about 1/10
and 4/3, the range expected for an INEL drag-disk undergoing a blowdown transient. The
Reynolds numbers in these tables were calculated using,

Re & M [44)
Hay

where the two-phase density and dynamic viscosity properties are defined as,

<ﬁ > &9, —(p— PG)<“> [45]
Hay 4 B~ (up — pe)a) [46]

and u,, the maximum sinusoidal velocity, given by,
tho = Xo(27f5). [47)
Substituting [45}{47] into [44] the Reynolds number can be written as,

Re = f(a)xoD(27fy), ' [48]
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Table 2. Virtual mass and drag coefficients at various amplitude parameters for single-phase liquid

Ka>=0)
Amplitude Virtual Mass Drag Reynolds
Parameter Coefficient Coefficient Number
(2";‘0) (Cp) (cp)
0.10 0.27 19.70 1,934
0.14 0.58 15.60 3,406
0.20 0.52 14.10 1,716
0.20 0.48 15.30 1,808
0.26 0.62 12.66 6,134
0.30 0.42 10.13 7,125
0.33 1.21 12.10 3,922
8.37 0.79 6.73 4,305
0.43 1.24 9.63 4,912
0.49 1.04 3.65 5,792
0.51 1.09 5.38 6,075
0.66 1.93 3.54 3,929
0.91 1.20 4.51 5,368
0.91 1.68 7.88 5,524
0.92 1.57 11.38 5,755
0.94 1.59 3.64 5,556
1.22 1.83 5.07 7,216

where,

N (oL — oL — PG]<“>
S py— (u— #u)<a> ‘

[49]

Equations [48] and [49] were used for the calculation of the Reynolds numbers listed in tables
2-7. Typical accelerometer and strain gauge signals, at frequencies (f) of 15.6 Hz, 7.8 Hz
and 1.9 Hz, are shown in figures 4, 6 and 8. Before reducing the data, they were smoothed
using the numerical low-pass filter algorithm mentioned previously. The corresponding

Table 3. Virtual mass and drag coefficients at various amplitude parameters for a void fraction

of 3.5%

Amplitude Virtual Mass Drag Reynolds

Parameter Coefficient Coefficient Number

&y () (Cp)
0.12 0.50 31.94 2,850
0.14 0.47 28.35 3,289
0.21 0.41 16.13 4,852
0.22 0.24 13.31 5,269
0.33 0.52 16.81 3,950
0.35 0.77 14,12 4,112
0.41 0.81 10.26 4,649
0.49 0.49 5.11 5,751
0.73 0.90 4.29 4,291
0.87 1.17 3.56 5,066
0.91 0.93 2.98 5,413
0.93 0.94 1.75 5,481
0.98 1.01 8.21 5,788
1.15 1.29 4.5 6,810
1.26 0.90 4,03 7,476
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Table 4. Virtual mass and drag coefficients at various amplitude parameters for a void fraction

of 7%

Amplitude Virtual Mass Drag Reynolds

Parameter Coefficient Coefficient Number

(2_";_0) (Cq) (cp)
0.11 0.58 34.20 2,501
0.13 0.43 33.04 3,028
0.16 0.45 24.80 3,757
0.18 0.42 21.96 4,236
0.35 0.36 15.25 4,108
0.50 0.73 4.41 5,852
0.74 0.79 12.42 4,367
0.82 1.11 2.82 4,862
0.85 0.95 3.66 5,032
1.06 0.81 1.82 6,266
1.10 1.00 7.16 6,530
1.17 1.26 2.62 6,512

Table 5. Virtual mass and drag coefficients at various amplitude parameters for a void fraction

of 129,
Amplitude Virtual Mass Drag Reynolds
Parameter Coefficient Coefficient Number
(?' 'xo) ()
D
0.12 0.29 31.26 2,735
0.14 0.30 23.25 3,171
0.16 0.23 24.00 3,744
0.21 0.25 18.20 4,950
0.36 0.46 16.80 1,380
0.48 0.57 5.83 5,638
0.49 0.48 5.70 5,657
0.82 0.98 6.38 4,829
1.05 0.87 6.64 6,207
1.23 1.21 5.81 7,281

STRAIN GAGE (-)

ACCELEROMETER(+)

8 3 48 63
DATA POINT NO.
Figure 4. Unfiltered accelerometer and strain gage outputs in single-phase liquid at 15.6 Hz.
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Table 6. Virtual mass and drag coeflicients at various amplitude parameters for a void fraction

of 15.5%

Amplitude Virtual Mass Drag Reynolds

Parameter Coefficient Coefficient Number
0.12 0.19 25.60 2,879
0.13 0.44 37.30 2,943
0.16 0,38 25.40 3,700
0.20 0.39 22.60 4,638
0.34 0.64 11.60 3,987
0.40 0.84 6.47 1,744
0.46 0.78 10.90 5,408
0.75 0.99 7.04 4,423
0.80 1.09 10.00 1,709
0.91 0.89 4.60 5,379
1.08 0.94 1.70 5,961
1.14 0.96 3.94 6,756
1.18 1.13 2.82 6,967
1.33 0.98 3.44 7,875

filtered signals are shown in figures 5, 7 and 9. In figures 4-9, the strain gauge and
accelerometer signals are very nearly inphase, T indicating that inertia forces were dominant.

In figure 4, which is for single-phase liquid and an oscillation frequency of f;, = 15.6 Hz,
the accelerometer signal is seen to be very nearly sinusoidal. The strain gauge signal had a
60 Hz noise component. A comparison of figures 4 and 5 shows that the numerical filter
effectively removed the 60 Hz noise component.

Figure 6 shows the sampled signals at a frequency of 7.8 Hz and a void fraction of 19%,,
which was the highest void fraction used in the experiment. At this void fraction, the motion

Table 7. Virtual mass and drag coefficients at various amplitude parameters for a void fraction

of 19%

Amplitude Virtual Mass Drag Reynolds

Parameter Coefficient Coefficient Number
(215"_0) (cy) (cp)
0.12 0.15 31.63 2,853
0.14 0.25 21.00 3,296
0.16 0.45 30.75 3,538
0.16 0.33 26.0 3,666
0.26 0.32 9.80 3,093
0.29 0.54 6.74 3,400
0.30 0.30 13.62 3,454
0.31 -0.23 15.80 3,631
0.68 0.66 5.00 3,997
0.71 0.82 10.90 4,193
0.73 0.55 7.64 4,307
0.79 0.57 3.28 4,679
0.95 0.67 9.25 5,609
1.18 1.18 4.50 6,963

+Note inversion of polarity of strain gage signal.
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Figure 5. Filtered accelerometer and strain gage outputs in single-phase liquid at 15.6 Hz with a
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Figure 6. Unfiltered accelerometer and strain gage outputs for a void fraction of 19% at 7.8 Hz.
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Figure 7. Filtered accelerometer and strain gage outputs for a void fraction of 199 at 7.8 Hz with

a cutoff frequency of 10 Hz.
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STRAIN GAGE (-)

v ACCELEROMETER (+)

DATA POINT NO.
Figure 8. Unfiltered accelerometer and strain gage outputs for single-phase liquid at 1.9 Hz.

of the two-phase fiuid included a number of bubble swarms (i.e. eddies), propagating
upwards through the pipe. The agitation of the disk due to the eddies was almost periodic.
Figures 6 and 7 show that the effect of the bubble swarms on the accelerometer signal was
to introduce a low frequency component, whereas the strain gauge is seen to be less sensitive.
At lower void fractions, there were no bubble swarms but the disk was perturbed by the
effect of bubbles preferentially collecting under the lower surface of the disk, as shown in
figure 10.

As can be seen in figure 8, the motion of the paddle at a frequency of 1.9 Hz, though
periodic, was not sinusoidal. This was due to the effect of the restraining mechanism on the
shaker, which arrested the downward movement of the shaker bar on which the paddle was
mounted. However, the fiitered versions of these signals, shown in figure 9, which were used
to reduce the data, are very nearly sinusoidal.

The virtual mass and drag coefficients in [9] were calculated from the filtered force and
acceleration signals using [33] and [34] respectively, and then correlated against the ampli-
tude parameter (2nx,/D). Figures 11-22 show the variation of the virtual mass and drag

2586.0

2481.6 STRAIN GAGE (-)

2377

22727

OUTPUT

2168.3

20639

ACCELEROMETER(+)
1959.4

1855.0 | s
3 18 33 48 63
DATA POINT NO.

Figure 9. Filtered accelerometer and strain gage outputs for single-phase liquid at 1.9 Hz and a
cutoff frequency of 2.5 Hz.
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FIGURE 10. EFFECT OF BUBBLES ON THE DISK AT LOW
VOID FRACTIONS ({a) <1%)
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Figure 11. Variation of virtual mass coefficient with amplitude parameter for single-phase liquid

(ad>=0).
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coefficients with amplitude parameter for the various void fractions tested. The best fit lines
in these figures show that C,, and C,, vary monotonically with amplitude parameter.The
information in figures 11-22 is also presented in tables 2-7.

As seen in figure 11, the virtual mass coefficient for single-phase liquid increases, at a
decreasing rate, with amplitude parameter in the measured range. The drag coefficient,
as seen in figure 17, decreases rapidly up to an amplitude parameter of 0.5, and then
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Figure 14. Variation of virtual mass coefficient with amplitude parameter for a void fraction of
12%.
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decreases at a much slower rate, finally approaching the steady-state value of the drag
coefficient, 1.13 (Carmody 1964). Our results are for amplitude parameters generally
smaller than those of Keulegan & Carpenter (1958). However, the trends observed in our
data are similar to those found by Keulegan and Carpenter for plates, although our
measured values of virtual mass and drag coefficients appear to be somewhat lower than
values extrapolated from their data (for plates).

VIRTUAL MASS COEFFICIENT (Cy)

051
0 1 I N | | W NSNS S NS UUNUNN NS ENN R |
0O 01 0203 04 05 06 07 08 09 10 1Lt 12 13
2wXg
AMPLITUDE PARAMETER( 5 )
Figure 16. Variation of virtual mass coefficient with amplitude parameter for a void fraction of
19%.
24r
22}
20
18 F

DRAG COEFFICIENT (Cp)
»

2r

cO ol 02 03 04 O8 O8 O7 08 098 10 Il L2 13 14

A P

AMPLITUDE PARAMETER (£582)
Figure 17. Variation of drag coefficient with amplitude parameter for single-phase liquid (<o) = 0).
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Figure 22. Variation of drag coefficient with amplitude parameter for a void fraction of 19%,.
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Figure 23. Three-dimensional plot of the virtual mass coefficient.
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Figure 24. Three-dimensional plot of the drag coefficient.

As can be seen in figures 12~16 and figures 18-22 in a two-phase fluid, for the same
value of the amplitude parameter, the virtual mass coefficients tend to become smaller, and
the drag coefficients larger, with increasing void fractions. This trend can be seen more
clearly in the three dimensional plots given in figures 23 and 24.

CONCLUSION

During a blowdown transient, the maximum amplitude parameter of an INEL
drag-disk is expected to be of the order unity, since a drag-disk of diameter 0.763 cm
(0.3in.) experiences a maximum displacement of the order of 0.1 cm. For this amplitude
parameter the experimentally determined virtual mass coefficient is of the order of unity.
It has been shown previously by Kamath & Lahey (1980), that a virtual mass coefficient
as large as 5.0 had a negligible effect on the transient response of the disk. Thus, we can
conclude that the effect of the virtual mass of the disk is negligible in the transient analysis
of the INEL drag-disk, both in single and two-phase flows.

NOMENCLATURE

A, amplitude of sinusoidal acceleration
Cp, drag coefficient
C, virtual mass coeflicient

D diameter of the disk

E Young's modulus of the material of the beam

f frequency

f. cutoff frequency of the numerical filter

f, natural frequency of disk and beam

fo frequency of Oscillation

f, sampling frequency

fr roll-off termination frequency of the numerical filter
F, drag force on disk
F,. virtual mass force on disk

G mass flux

g, gravitational constant
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thickness of the beam

second moment of the area of the cross-section of a beam about its neutral axis
square root of — 1

spring constant

length of the beam

equivalent length, / + D/2

mass of disk and beam

number of data samples in one run
pressure

time

half the time period of one run
center-of-mass velocity

amplitude of sinusoidal velocity

velocity of phase-k

displacement of the disk

velocity of the disk

acceleration of the disk

exponential Fourier Transform of x
complex conjugate of X

amplitude of the (sinusoidal) displacement

=
S At S ETN i n RN e -

Greek symbols
o void fraction
At time internal between samples
p two-phase density, p{1 —{a)) + p,{a)
p, density of phase-k (k =1 or “v™)
W, dynamic viscosity of phase-k (k =1, or v)
ts dynamic viscosity of the two-phase mixture, uf1 — {a)) + p,{a)
o angular frequency
<é> cross-sectional average of ¢
4 s defined by _
y* complex conjugate of y
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